Author Affiliations
Abstract
1 Department of Electrical and Electronic Engineering, Yonsei University, 03722 Seoul, Republic of Korea
2 Current address: Samsung Electronics, Hwasung, 18448 Gyeonggi-do, Republic of Korea
3 IHP, Im Technologiepark 25, 15236 Frankfurt (Oder), Germany
4 Technische Universität Berlin, Einsteinufer 25, 10587 Berlin, Germany
We demonstrate a silicon electronic–photonic integrated 25 Gb/s nonreturn-to-zero transmitter that includes driver circuits, depletion-type Si ring modulator, Ge photodetector, temperature sensor, on-chip heater, and temperature controller, all monolithically integrated on a 0.25 μm photonic BiCMOS technology platform. The integrated transmitter successfully provides stable and optimal 25 Gb/s modulation characteristics against external temperature fluctuation.
Photonics Research
2021, 9(4): 04000507
Author Affiliations
Abstract
1 Department of Electrical and Electronic Engineering, Yonsei University, 03722 Seoul, South Korea
2 Now at University of Michigan, Ann Arbor, 48109 Michigan, USA
3 Now at Samsung Electronics, Hwasung, 18448 Gyeonggi-do, South Korea
4 Now at IMEC, Kapeldreef 75, 3001 Leuven, Belgium
5 IHP, Im Technologiepark 25, 15236 Frankfurt (Oder), Germany
We present an accurate, easy-to-use large-signal SPICE circuit model for depletion-type silicon ring modulators (Si RMs). Our model includes both the electrical and optical characteristics of the Si RM and consists of circuit elements whose values change depending on modulation voltages. The accuracy of our model is confirmed by comparing the SPICE simulation results of 25 Gb/s non-return-to-zero (NRZ) modulation with the measurement. The model is used for performance optimization of monolithically integrated Si photonic NRZ and pulse-amplitude-modulation 4 transmitters in the standard SPICE circuit design environment.
Photonics Research
2019, 7(9): 09000948
Author Affiliations
Abstract
Department of Electrical and Electronic Engineering, Yonsei University, Seoul 120-749, South Korea
We investigate influences of series resistances on the performance of 1.55 μm waveguide-type germanium photodetectors (Ge-PDs) on a silicon-on-insulator substrate. The current–voltage characteristics, responsivities, saturation photo-current characteristics, electrical reflection coefficients, and photodetection frequency responses of Ge-PDs, having different series resistances, are measured, and their equivalent circuit models are established. By analyzing the resulting circuit model parameters, we determine how much Ge-PD series resistances influence Ge-PD saturation photo-currents and photodetection bandwidth. These results should be of great use for optimization of Ge-PD fabrication processes and device parameters for target applications.
040.5160 Photodetectors 040.6040 Silicon 060.0060 Fiber optics and optical communications 
Chinese Optics Letters
2017, 15(10): 100401

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!